Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Front Immunol ; 14: 1151937, 2023.
Article in English | MEDLINE | ID: covidwho-2299189

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus does not only lead to pulmonary infection but can also infect other organs such as the gut, the kidney, or the liver. Recent studies confirmed that severe cases of COVID-19 are often associated with liver damage and liver failure, as well as the systemic upregulation of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα). However, the impact these immune mediators in the liver have on patient survival during SARS-CoV-2 infection is currently unknown. Here, by performing a post-mortem analysis of 45 patients that died from a SARS-CoV-2 infection, we find that an increased expression of TNFA in the liver is associated with elevated mortality. Using publicly available single-cell sequencing datasets, we determined that Kupffer cells and monocytes are the main sources of this TNFα production. Further analysis revealed that TNFα signaling led to the upregulation of pro-inflammatory genes that are associated with an unfavorable outcome. Moreover, high levels of TNFA in the liver were associated with lower levels of interferon alpha and interferon beta. Thus, TNFα signaling in the infected SARS-CoV-2 liver correlates with reduced interferon levels and overall survival time.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , COVID-19/immunology , Cytokines/immunology , Liver/immunology , Tumor Necrosis Factor-alpha/immunology
3.
Rev Med Virol ; 31(5): 1-13, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574052

ABSTRACT

Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Dexamethasone/administration & dosage , Interleukin-17/administration & dosage , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , COVID-19/genetics , COVID-19/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341695

ABSTRACT

Overproduction of inflammatory cytokines is a keystone event in COVID-19 pathogenesis; TNF and its receptors (TNFR1 and TNFR2) are critical pro-inflammatory molecules. ADAM17 releases the soluble (sol) forms of TNF, TNFR1, and TNFR2. This study evaluated TNF, TNFRs, and ADAM17 at the protein, transcriptional, and gene levels in COVID-19 patients with different levels of disease severity. In total, 102 patients were divided into mild, moderate, and severe condition groups. A group of healthy donors (HD; n = 25) was included. Our data showed that solTNFR1 and solTNFR2 were elevated among the COVID-19 patients (p < 0.0001), without increasing the transcriptional level. Only solTNFR1 was higher in the severe group as compared to the mildly ill (p < 0.01), and the level was higher in COVID-19 patients who died than those that survived (p < 0.0001). The solTNFR1 level had a discrete negative correlation with C-reactive protein (p = 0.006, Rho = -0.33). The solADAM17 level was higher in severe as compared to mild disease conditions (p < 0.01), as well as in COVID-19 patients who died as compared to those that survived (p < 0.001). Additionally, a potential association between polymorphism TNFRSF1A:rs767455 and a severe degree of disease was suggested. These data suggest that solTNFR1 and solADAM17 are increased in severe conditions. solTNFR1 should be considered a potential target in the development of new therapeutic options.


Subject(s)
ADAM17 Protein , COVID-19/immunology , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , ADAM17 Protein/blood , ADAM17 Protein/immunology , Adult , Aged , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Receptors, Tumor Necrosis Factor, Type I/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
5.
J Biol Chem ; 296: 100630, 2021.
Article in English | MEDLINE | ID: covidwho-1333548

ABSTRACT

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Immunologic Factors/pharmacology , Interleukin-18/genetics , Receptors, Interleukin-18/genetics , Anti-Inflammatory Agents/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Candida albicans/growth & development , Candida albicans/pathogenicity , Gene Expression Regulation , HEK293 Cells , Humans , Immunologic Factors/biosynthesis , Inflammation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-18/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophage Activation Syndrome/drug therapy , NF-kappa B/genetics , NF-kappa B/immunology , Primary Cell Culture , Receptors, Interleukin-18/antagonists & inhibitors , Receptors, Interleukin-18/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , COVID-19 Drug Treatment
6.
Viruses ; 13(5)2021 05 11.
Article in English | MEDLINE | ID: covidwho-1224260

ABSTRACT

The role of the adaptive microenvironment components in severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection is widely researched, but remains unclear. Studying the common dynamics of adaptive immune response changes can help understand the pathogenesis of coronavirus disease 2019 (COVID-19), especially in critical patients. The aim of the present study was to determine the cytokines concentration and leukocyte subpopulations profiles in the severe COVID-19 (n = 23) and critical (n = 18) COVID-19 group distinguished by the computed tomography (CT) severity score. We observed lower percentage of lymphocyte subpopulation, higher neutrophils to lymphocytes ratio (NLR) and higher IL-6 concentration in critical COVID-19 group than in severe group. CT severity score was negative correlated with proportion of lymphocytes, lymphocytes T, CD4+ cells, Treg cells and NK cells and positive correlated with neutrophils, NLR, and IL-6. In critical group more correlations between cytokines and lymphocytes were observed, mainly between TNF-α, IL-1ß and lymphocyte subpopulations. The collective assessment of the cytokine profile, leukocyte subpopulations and the CT severity score can help to characterize and differentiate patient in advanced COVID-19 than the study of single parameters. We have shown that the interconnection of elements of the adaptive microenvironment can play an important role in critical COVID-19 cases.


Subject(s)
COVID-19/immunology , Cytokines/analysis , Leukocytes/cytology , Adult , Aged , COVID-19/metabolism , Cytokines/immunology , Female , Humans , Interleukin-1beta/immunology , Killer Cells, Natural/immunology , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Neutrophils/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Tomography, X-Ray Computed , Tumor Necrosis Factor-alpha/immunology
7.
J Int Med Res ; 49(3): 3000605211002695, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1145418

ABSTRACT

Over the past several decades, studies have demonstrated the existence of bi-directional relationships between periodontal disease and systemic conditions. Periodontitis is a polymicrobial and multifactorial disease involving both host and environmental factors. Tissue destruction is primarily associated with hyperresponsiveness of the host resulting in release of inflammatory mediators. Pro-inflammatory cytokines play a major role in bacterial stimulation and tissue destruction. In addition, these cytokines are thought to underlie the associations between periodontitis and systemic conditions. Current research suggests that increased release of cytokines from host cells, referred to as the cytokine storm, is associated with disease progression in patients with coronavirus disease 2019 (COVID-19). An intersection between periodontitis and pulmonary disease is biologically plausible. Hence, we reviewed the evidence linking COVID-19, cytokines, and periodontal disease. Plaque control is essential to prevent exchange of bacteria between the mouth and the lungs, reducing the risk of lung disease. Understanding these associations may help identify individuals at high risk and deliver appropriate care at early stages.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Dental Plaque/immunology , Host-Pathogen Interactions/immunology , Periodontitis/immunology , SARS-CoV-2/pathogenicity , Stress, Psychological/immunology , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Dental Plaque/complications , Dental Plaque/genetics , Dental Plaque/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lung/immunology , Lung/pathology , Lung/virology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Periodontitis/complications , Periodontitis/genetics , Periodontitis/virology , SARS-CoV-2/immunology , Signal Transduction , Stress, Psychological/complications , Stress, Psychological/genetics , Stress, Psychological/virology , Tooth/immunology , Tooth/pathology , Tooth/virology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
8.
ACS Appl Bio Mater ; 4(2): 1307-1318, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1069089

ABSTRACT

Recent evidence suggests that proinflammatory cytokines, such as tumor necrosis factor α (TNF-α), play a pivotal role in the development of inflammatory-related pathologies (covid-19, depressive disorders, sepsis, cancer, etc.,). More importantly, the development of TNF-α biosensors applied to biological fluids (e.g. sweat) could offer non-invasive solutions for the continuous monitoring of these disorders, in particular, polydimethylsiloxane (PDMS)-based biosensors. We have therefore investigated the biofunctionalization of PDMS surfaces using a silanization reaction with 3-aminopropyltriethoxysilane, for the development of a human TNF-α biosensor. The silanization conditions for 50 µm PDMS surfaces were extensively studied by using water contact angle measurements, electron dispersive X-ray and Fourier transform infrared spectroscopies, and fluorescamine detection. Evaluation of the wettability of the silanized surfaces and the Si/C ratio pointed out to the optimal silanization conditions supporting the formation of a stable and reproducible aminosilane layer, necessary for further bioconjugation. An ELISA-type immunoassay was then successfully performed for the detection and quantification of human TNF-α through fluorescent microscopy, reaching a limit of detection of 0.55 µg/mL (31.6 nM). Finally, this study reports for the first time a promising method for the development of PDMS-based biosensors for the detection of TNF-α, using a quick, stable, and simple biofunctionalization process.


Subject(s)
Dimethylpolysiloxanes/chemistry , Immunoassay/methods , Tumor Necrosis Factor-alpha/analysis , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Carbon/chemistry , Humans , Immunoassay/instrumentation , Limit of Detection , Microfluidics , Microscopy, Fluorescence , SARS-CoV-2/isolation & purification , Silicon/chemistry , Tumor Necrosis Factor-alpha/immunology , Wettability
9.
Cell ; 184(1): 149-168.e17, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064910

ABSTRACT

COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Interferon-gamma/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Cell Death , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/immunology , Inflammation/pathology , Lymphohistiocytosis, Hemophagocytic/chemically induced , Male , Mice , Mice, Transgenic , THP-1 Cells
10.
Nat Immunol ; 22(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065904

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/virology , Child , Cytokines/metabolism , Female , Glycosylation , Humans , Immunoglobulin G/metabolism , Interleukin-6 , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
11.
Eur Rev Med Pharmacol Sci ; 24(23): 12536-12544, 2020 12.
Article in English | MEDLINE | ID: covidwho-995014

ABSTRACT

OBJECTIVE: We aimed to study the dynamics of cytokines and lymphocyte subsets and their correlation with the prognosis of patients with severe COVID-19. PATIENTS AND METHODS: The lymphocyte subsets and cytokines of 31 patients with severe COVID-19 (7 deaths and 24 survivals) were longitudinally analyzed. RESULTS: The mean age of enrolled patients was 64 years, 24 (77.4%) patients were men, and 23 (74.2%) patients had comorbidities. Compared with survival group, the death group showed significant and sustained increases in the levels of IL-6, IL-8, and IL-10 from baseline to 28 days after admission (all p<0.05). No significant differences were observed in the levels of TNF-α, IL-1b, IL-2, IL-4, IL-5, IL-12P70, IL-17, IFN-α, and IFN-γ between the death group and survival group during the follow-up (all p>0.05). The absolute counts of CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD45+ T cells were lower in both survival group and death group patients from hospital admission to 3 days after admission, and gradually recovered in 4 to 35 days in the survival group, but continually stayed at low levels in the death group during the follow-up. CONCLUSIONS: The kinetic changes of cytokines and lymphocyte subsets are related with the prognosis of patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , T-Lymphocyte Subsets/immunology , Aged , Aged, 80 and over , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Humans , Interferon-alpha/immunology , Interleukin-10/immunology , Interleukin-12/immunology , Interleukin-17/immunology , Interleukin-1beta/immunology , Interleukin-2/immunology , Interleukin-4/immunology , Interleukin-5/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocyte Common Antigens/immunology , Longitudinal Studies , Lymphocyte Count , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
12.
Life Sci ; 267: 118923, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-988727

ABSTRACT

Such testing and trying time probably never seen before in the human history. The novel coronavirus disease abbreviated as COVID-19 is the ongoing health crisis which entered into human life in late December 2019. The ease of transmission between humans and the undetectability in early stage makes COVID-19 frightening and unprecedented. The disease is characterised by pneumonia progressing to breathing difficulty, acute respiratory distress syndrome (ARDS) and multi-organ failure. Clinical studies suggest excessive release of inflammatory mediators leads to cytokine storm, a phenomenon which appears to be potentially life-threatening in COVID-19. Across the globe, when the world authorities are grappling to contain the virus, our review provides a glimpse on structure, pathophysiology of the virus and further sheds light on various clinical complications associated with the disease in order to open up/raise new horizons to explore various possible theoretical targets for COVID-19. The review also portrays a question and debates: Can targeting cytokine storm can be a feasible approach to combat COVID-19?


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , SARS-CoV-2/immunology , Antiviral Agents/therapeutic use , Cytokine Release Syndrome/physiopathology , Humans , Inflammation Mediators/metabolism , Interleukins/immunology , Respiratory Distress Syndrome/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Pathog Dis ; 79(1)2021 01 09.
Article in English | MEDLINE | ID: covidwho-963763

ABSTRACT

A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Receptors, KIR/immunology , Receptors, NK Cell Lectin-Like/immunology , Zoonoses/immunology , Animals , Animals, Exotic/virology , Asymptomatic Diseases , COVID-19/genetics , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Disease Reservoirs , Eutheria/virology , Gene Expression , Host Specificity , Humans , Immune Tolerance , Immunity, Innate , Interferon-beta/deficiency , Interferon-beta/genetics , Interferon-beta/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Monocytes/immunology , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptors, KIR/deficiency , Receptors, KIR/genetics , Receptors, NK Cell Lectin-Like/deficiency , Receptors, NK Cell Lectin-Like/genetics , SARS-CoV-2/pathogenicity , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Zoonoses/genetics , Zoonoses/transmission , Zoonoses/virology
14.
Eur J Clin Invest ; 51(1): e13429, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-873289

ABSTRACT

INTRODUCTION: The coronavirus pandemic has affected more than 20 million people so far. Elevated cytokines and suppressed immune responses have been hypothesized to set off a cytokine storm, contributing to ARDS, multiple-organ failure and, in the most severe cases, death. We aimed to quantify the differences in the circulating levels of major inflammatory and immunological markers between severe and nonsevere COVID-19 patients. METHODS: Relevant studies were identified from PubMed, EMBASE, Web of Science, SCOPUS and preprint servers. Risk of bias was assessed for each study, using appropriate checklists. All studies were described qualitatively and a subset was included in the meta-analysis, using forest plots. RESULTS: Based on 23 studies, mean cytokine levels were significantly higher (IL-6: MD, 19.55 pg/mL; CI, 14.80, 24.30; IL-8: MD, 19.18 pg/mL; CI, 2.94, 35.43; IL-10: MD, 3.66 pg/mL; CI, 2.41, 4.92; IL-2R: MD, 521.36 U/mL; CI, 87.15, 955.57; and TNF-alpha: MD, 1.11 pg/mL; CI, 0.07, 2.15) and T-lymphocyte levels were significantly lower (CD4+ T cells: MD, -165.28 cells/µL; CI, -207.58, -122.97; CD8+ T cells: MD, -106.51 cells/µL; CI, -128.59, -84.43) among severe cases as compared to nonsevere ones. There was heterogeneity across studies due to small sample sizes and nonuniformity in outcome assessment and varied definitions of disease severity. The overall quality of studies was sub-optimal. CONCLUSION: Severe COVID-19 is characterized by significantly increased levels of pro-inflammatory cytokines and reduced T lymphocytes. Well-designed and adequately powered prospective studies are needed to amplify the current evidence and provide definitive answers to dilemmas regarding timing and type of anti-COVID-19 therapy particularly in severe patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , CD4 Lymphocyte Count , COVID-19/blood , Humans , Interleukin-10/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Lymphocyte Count , Receptors, Interleukin-2/immunology , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
15.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-841900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Subject(s)
Apoptosis/immunology , Betacoronavirus/pathogenicity , Caspase 8/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Necroptosis/immunology , Pneumonia, Viral/immunology , Pulmonary Fibrosis/immunology , Animals , COVID-19 , Caspase 8/genetics , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
16.
Ann Palliat Med ; 9(5): 3235-3248, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-782585

ABSTRACT

BACKGROUND: Neither a vaccine nor specific therapeutic drugs against 2019 novel coronavirus have been developed. Some studies have shown that Xuebijing injection (XBJ) can exert an anti-inflammatory effect by inhibiting the production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and other cytokines. This study aimed to investigate the effect of XBJ on coronavirus disease 2019 (COVID-19) and its effects on IL-6 and tumor necrosis alpha TNF-α. METHODS: A total of 42 patients, who were diagnosed with COVID-19 and treated with XBJ combined with routine treatment at Chongqing University Three Gorges Hospital between January 20, 2020, and March 11, 2020, were selected as the observation group. A control group comprising 16 patients who received routine treatment was also established, and cases were matched from the observation group on a 1:1 basis according to age, comorbidities, and mild and severe disease. The clinical symptoms, laboratory test indexes, and changes in computed tomography (CT) scans of patients in the two groups were observed at the time of admission and 7 days after treatment, and the time taken for the patients to produce a negative nucleic acid test was also recorded. RESULTS: There were no significant differences in baseline data between the two groups. After treatment, there were significant improvements in IL-6 levels and body temperature in the observation group as compared with the control group. Particularly in severe patients, the reduction in body temperature in the observation group was greater than that in the control group (P<0.05). A higher number of patients in the observation group showed improved CT imaging results compared with the control group, and the time taken to produce a negative nucleic acid test was shorter in the observation group than in the control group; however, the differences were not statistically significant (P>0.05). Furthermore, there were no significant differences in TNF-α and IL-10 between the two groups. CONCLUSIONS: The results of this study suggest that routine treatment combined with XBJ can better improve the clinical outcomes of COVID-19 patients.


Subject(s)
Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , Adult , Aged , Betacoronavirus , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Female , Fever/physiopathology , Humans , Infusions, Intravenous , Interleukin-10/immunology , Interleukin-6/immunology , Length of Stay , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Time Factors , Tomography, X-Ray Computed , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology , COVID-19 Drug Treatment
17.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: covidwho-781300

ABSTRACT

COVID-19-associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: hyperinflammatory cytokine storm; and failure of host protective immunity that results in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay, was employed in 27 patients with COVID-19, 51 patients with sepsis, 18 critically ill nonseptic (CINS) patients, and 27 healthy control volunteers to evaluate adaptive and innate immune status by quantitating T cell IFN-É£ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40%-50% of the IFN-É£ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels that were not associated with elevations in other canonical proinflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, IL-7 administered ex vivo restored T cell IFN-É£ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies.


Subject(s)
Adaptive Immunity/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Immune Tolerance/immunology , Immunity, Innate/immunology , Pneumonia, Viral/immunology , Sepsis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Case-Control Studies , Critical Illness , Enzyme-Linked Immunospot Assay , Female , Healthy Volunteers , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-6/immunology , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Pandemics , SARS-CoV-2 , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
19.
Signal Transduct Target Ther ; 5(1): 186, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-744366

ABSTRACT

Sterol regulatory element binding protein-2 (SREBP-2) is activated by cytokines or pathogen, such as virus or bacteria, but its association with diminished cholesterol levels in COVID-19 patients is unknown. Here, we evaluated SREBP-2 activation in peripheral blood mononuclear cells of COVID-19 patients and verified the function of SREBP-2 in COVID-19. Intriguingly, we report the first observation of SREBP-2 C-terminal fragment in COVID-19 patients' blood and propose SREBP-2 C-terminal fragment as an indicator for determining severity. We confirmed that SREBP-2-induced cholesterol biosynthesis was suppressed by Sestrin-1 and PCSK9 expression, while the SREBP-2-induced inflammatory responses was upregulated in COVID-19 ICU patients. Using an infectious disease mouse model, inhibitors of SREBP-2 and NF-κB suppressed cytokine storms caused by viral infection and prevented pulmonary damages. These results collectively suggest that SREBP-2 can serve as an indicator for severity diagnosis and therapeutic target for preventing cytokine storm and lung damage in severe COVID-19 patients.


Subject(s)
Betacoronavirus/pathogenicity , Cholesterol/biosynthesis , Coronavirus Infections/genetics , Cytokine Release Syndrome/genetics , Host-Pathogen Interactions/genetics , Leukocytes, Mononuclear/immunology , Pneumonia, Viral/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Betacoronavirus/immunology , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Gene Expression Regulation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , Host-Pathogen Interactions/immunology , Humans , Intensive Care Units , Interleukin-1beta/genetics , Interleukin-1beta/immunology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Lung/immunology , Lung/metabolism , Lung/virology , NF-kappa B/genetics , NF-kappa B/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Primary Cell Culture , Proprotein Convertase 9/genetics , Proprotein Convertase 9/immunology , SARS-CoV-2 , Signal Transduction , Sterol Regulatory Element Binding Protein 2/immunology , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
20.
JCI Insight ; 5(13)2020 07 09.
Article in English | MEDLINE | ID: covidwho-732194

ABSTRACT

BACKGROUNDFatal cases of COVID-19 are increasing globally. We retrospectively investigated the potential of immunologic parameters as early predictors of COVID-19.METHODSA total of 1018 patients with confirmed COVID-19 were enrolled in our 2-center retrospective study. Clinical feature, laboratory test, immunological test, radiological findings, and outcomes data were collected. Univariate and multivariable logistic regression analyses were performed to evaluate factors associated with in-hospital mortality. Receiver operator characteristic (ROC) curves and survival curves were plotted to evaluate their clinical utility.RESULTSThe counts of all T lymphocyte subsets were markedly lower in nonsurvivors than in survivors, especially CD8+ T cells. Among all tested cytokines, IL-6 was elevated most significantly, with an upward trend of more than 10-fold. Using multivariate logistic regression analysis, IL-6 levels of more than 20 pg/mL and CD8+ T cell counts of less than 165 cells/µL were found to be associated with in-hospital mortality after adjusting for confounding factors. Groups with IL-6 levels of more than 20 pg/mL and CD8+ T cell counts of less than 165 cells/µL had a higher percentage of older and male patients as well as a higher proportion of patients with comorbidities, ventilation, intensive care unit admission, shock, and death. Furthermore, the receiver operating curve of the model combining IL-6 (>20 pg/mL) and CD8+ T cell counts (<165 cells/µL) displayed a more favorable discrimination than that of the CURB-65 score. The Hosmer-Lemeshow test showed a good fit of the model, with no statistical significance.CONCLUSIONIL-6 (>20 pg/mL) and CD8+ T cell counts (<165 cells/µL) are 2 reliable prognostic indicators that accurately stratify patients into risk categories and predict COVID-19 mortality.FundingThis work was supported by funding from the National Natural Science Foundation of China (no. 81772477 and 81201848).


Subject(s)
CD8-Positive T-Lymphocytes , Coronavirus Infections/immunology , Hospital Mortality , Interleukin-6/immunology , Pneumonia, Viral/immunology , Aged , Area Under Curve , Betacoronavirus , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/mortality , Female , Humans , Interleukin-10/immunology , Interleukin-8/immunology , Logistic Models , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/epidemiology , Male , Middle Aged , Multivariate Analysis , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Prognosis , ROC Curve , Receptors, Interleukin-2/immunology , Retrospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL